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Jimmy Tran Proofs Math E-23a (Fall 2023)

Preface

This is the first half of an integrated treatment of linear algebra, real analysis, and multivariable
calculus. By combining these disciplines into one course, we show important relations between each,
which allows us to use results from one topic to gain deeper understanding of other topics. We cover
matrices, eigenvectors, dot and cross products, limits, continuity, and differentiability, all in multiple
dimensions, with an introduction to manifolds. This course covers both mathematical proofs as well
as applications.
These notes serve as a reference for proofs that students in the course are expected to know how to
recreate and teach to others.

Historical Note. Math E–23a began as a direct cross-listing of Harvard College’s accelerated Math
23a. For many years Extension- and College-registered students sat in the same lecture hall, turned
in the same problem sets, and took the same exams—the only difference was the catalog number.
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Jimmy Tran Proofs Math E-23a (Fall 2023)

Proof 0.1

Suppose that a and b are two elements of a field F . Prove the following:

(a) ∀a ∈ F, 0a = 0

(b) ∀a, b ∈ F , if ab = 0, then either a = 0 or b = 0

(c) ∀a ∈ F , the additive inverse of a is unique

Proof

Part (a)

0 + 0 = 0 (Additive identity)

(0 + 0)a = 0a

0a+ 0a = 0a (Distributivity)

(0a+ 0a) + (−0a) = 0a+ (−0a) (Existence of additive inverse)

0a+ (0a+ (−0a)) = 0a+ (−0a) (Associativity)

0a+ 0 = 0 (Additive inverse of 0a)

0a = 0 (Additive identity)

■

Part (b)

WLOG, assume a ̸= 0. Then ∃a−1 such that a−1a = 1. So,

ab = 0

⇒ a−1(ab) = a−10

⇒ (a−1a)b = 0 (Associativity (LHS) and Proof 0.1a (RHS))

⇒ 1b = 0 (Multiplicative inverse)

⇒ b = 0 (Multiplicative identity)

■

Part (c)

Assume x1 and x2 are both additive inverses of some a ∈ F . Then a+ x1 = 0 and a+ x2 = 0,
and they equal each other.

a+ x1 = a+ x2

⇒ (x1 + a) + x1 = (x1 + a) + x2

⇒ 0 + x1 = 0 + x2 (Definition of additive inverse)

⇒ x1 = x2 (Additive identity)

■
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Jimmy Tran Proofs Math E-23a (Fall 2023)

Proof 1.1

A is a n×m matrix, B is m× p, and C is p× r. Using summation notation, prove that matrix
multiplication is associative: that (AB)C = A(BC).

Proof

By definition, (AB)ik =
∑m

j=1 aijbjk. Also, (BC)jq =
∑p

k=1 bjkckq.

We calculate both products:

((AB)C)iq =

p∑
k=1

(AB)ikckq =

p∑
k=1

 m∑
j=1

aijbjk

 ckq =

p∑
k=1

m∑
j=1

aijbjkckq

(A(BC))iq =

m∑
j=1

aij(BC)jq =

m∑
j=1

aij

(
p∑

k=1

bjkckq

)
=

m∑
j=1

p∑
k=1

aijbjkckq

Because multiplication and addition (of the matrix elements) are commutative and satisfy
distributivity, we can interchange the order of summation. Therefore, the products are equal.
■
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Jimmy Tran Proofs Math E-23a (Fall 2023)

Proof 1.2

Suppose that linear transformation T : Fn → Fm is represented by the m× n matrix
[
T
]
.

(i) Suppose the matrix
[
T
]
is invertible. Prove that the linear transformation T is one-to-one

and onto, hence invertible.

(ii) Suppose that the linear transformation T is invertible. Prove that its inverse S is linear.

(iii) Given that S is the inverse of T , and that both are linear, prove that the matrix of S is

the inverse of the matrix of T ; that is, prove that
[
S
]
=
[
T
]−1

.

Proof

Part (a)

Let y ∈ Fm arbitrary. Since
[
T
]
is invertible, ∃x ∈ Fn such that

[
T
]−1

y = x. In particular,

we can left-multiply by
[
T
]
so that

[
T
] [
T
]−1

y =
[
T
]
x, which simplifies to y = T (x). Since

y was arbitrary in the codomain, this shows that T is surjective.

Assume x1, x2 ∈ Fn, and T (x1) = T (x2). But T (x1) =
[
T
]
x1 =

[
T
]
x2. We can left-multiply

by its inverse, so that
[
T
]−1 [

T
]
x1 =

[
T
]−1 [

T
]
x2. This can be simplified as x1 = x2, so T is

injective.

Both results together show that T is invertible. ■

Part (b)

We want to show that S(ay1 + by2) = aS(y1) + bS(y2).

Since T is surjective, we can let y1 = T (x1) and y2 = T (x2) for some y1, y2 ∈ Fm, and let
y = ay1 + by2 for a, b ∈ F .

Then, since T is linear, S(ay1 + by2) = S(aT (x1) + bT (x2)) = S(T (ax1 + bx2)).

Since S is the inverse of T , (S ◦ T )(x) = x for any x ∈ Fn, so S(T (ax1 + bx2)) = ax1 + bx2.
Because S is an inverse, we know that S(y1) = S(T (x1)) = x1 and similarly S(y2) = x2, so
ax1 + bx2 = aS(y1) + bS(y2). Therefore, S is linear. ■

Part (c)

Since S is the inverse of T , that means (S ◦ T )(x) = S(T (x)) = x for all x ∈ Fn. S(T (x)) =
S(
[
T
]
x) =

[
S
] [
T
]
x = x. By definition, then,

[
S
] [
T
]
= In.

Also, (T ◦ S)(y) = T (S(y)) = y for all y ∈ Fm. So T (S(y)) = T (
[
S
]
y) =

[
T
] [
S
]
y = y.

Therefore,
[
T
] [
S
]
= Im.

Together these show that
[
S
]
is both a left- and right-inverse of

[
T
]
, which means

[
S
]
=
[
T
]−1

.
■

5



Jimmy Tran Proofs Math E-23a (Fall 2023)

Proof 2.1

(i) Show that for any vectors v⃗, w⃗ ∈ Rn, |v⃗ · w⃗| ≤ |v⃗| |w⃗|.
(ii) Prove that |x⃗+ y⃗| ≤ |x⃗|+ |y⃗|

Proof

Part (a)

Define a quadratic function of the variable t ∈ R by

f(t) = |tv⃗ − w⃗|2 = (tv⃗ − w⃗) · (tv⃗ − w⃗)

Since f(t) is the square of a length of a vector, it cannot be negative, so the quadratic equation
f(t) = 0 does not have two real roots. So its discriminant must satisfy b2 − 4ac ≤ 0.

We can use the distributivity of the dot product to get

f(t) = (tv⃗ − w⃗) · (tv⃗ − w⃗)

= t2v⃗ · v⃗ − 2tv⃗ · w⃗ + w⃗ · w⃗
= |v⃗|2 t2 − 2v⃗ · w⃗t+ |w⃗|2

So a = |v⃗|2, b = −2v⃗ · w⃗, and c = |w⃗|2. Then

b2 − 4ac ≤ 0

⇒ 4(v⃗ · w⃗)2 − 4 |v⃗|2 |w⃗|2 ≤ 0

⇒ 4(v⃗ · w⃗)2 ≤ 4 |v⃗|2 |w⃗|2

If v⃗ · w⃗ = 0, the result is trivial. If v⃗ · w⃗ ̸= 0, we divide by 4 and take the square root of both
sides and get |v⃗ · w⃗| ≤ |v⃗| |w⃗|. ■

Part (b)

|x⃗+ y⃗|2 = (x⃗+ y⃗) · (x⃗+ y⃗)

= (x⃗+ y⃗) · x⃗+ (x⃗+ y⃗) · y⃗ (Distributivity of the dot product)

≤ |x⃗+ y⃗| |x⃗|+ |x⃗+ y⃗| |y⃗| (Cauchy-Schwarz)

If |x⃗+ y⃗| = 0, the inequality is trivially true. Otherwise, we can divide by the common factor
|x⃗+ y⃗| and get

|x⃗+ y⃗| ≤ |x⃗|+ |y⃗|

■
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Jimmy Tran Proofs Math E-23a (Fall 2023)

Proof 3.1

Prove that a maximal set of linearly independent vectors for a subspace of Rn is also a minimal
spanning set for that subspace.

Proof

We need to show that the set of vectors is a spanning set and that it is minimal.

Let our subspace be V ⊆ Rn, and the basis vectors v⃗1, . . . , v⃗k. Since our set is maximal, if we
add any other vector w⃗ ∈ V to the basis set, the resulting set is linearly dependent:

a1v⃗1 + · · ·+ akv⃗k + bw⃗ = 0⃗

with not all of the ai’s and b equal to 0 (i.e., at least one must be nonzero).

(i) If b = 0, then since {v⃗1, . . . , v⃗k} is a linearly independent set, we must have ai = 0 for all
i, which is a contradiction.

(ii) If b ̸= 0, then we can rewrite the above equation as w⃗ = −1
b (a1v⃗1 + · · ·+ akv⃗k). Since

w⃗ ∈ V was arbitrary, the v⃗i’s span V .

To show that the vectors are minimal, WLOG remove v⃗k, and assume that {v⃗1, . . . , v⃗k−1} still
spans V . Then, since v⃗k ∈ V , we can write it as

v⃗k = a1v⃗1 + · · ·+ ak−1v⃗k−1

⇒ 0⃗ = a1v⃗1 + · · ·+ ak−1v⃗k−1 − 1 · v⃗k

However, since clearly not all the coefficients are 0, this implies that {v⃗1, . . . , v⃗k} are linearly
dependent, which is a contradiction. Therefore, the set of vectors must be minimal. ■
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Jimmy Tran Proofs Math E-23a (Fall 2023)

Proof 3.2

Let T : Rn → Rm be a linear transformation.

(i) Define kernel and image.

(ii) Prove that kerT and Img T are subspaces of Rn and Rm, respectively.

(iii) Briefly explain (without proof) how you can construct a basis for kerT and for Img T by
row reducing the matrix [T ].

(iv) Prove that dim(kerT ) + dim(Img T ) = n.

Proof

Part (a)

kerT =
{
x⃗ ∈ Rn : T (x⃗) = 0⃗

}
Img T = {y⃗ ∈ Rm : ∃x⃗ ∈ Rn such that y⃗ = T (x⃗)}

Part (b)

For the image, let y⃗1, y⃗2 ∈ Img T , and y⃗ = ay⃗1 + by⃗2. We can write y⃗1 = T (x⃗1) and y⃗2 = T (x⃗2)
for some x⃗1, x⃗2 ∈ Rn. So y⃗ = aT (x⃗1)+ bT (x⃗2). By linearity, this means that y⃗ = T (ax⃗1+ bx⃗2),
which shows that a linear combination of elements of the image is also in the image. In other
words, that Img T ⊆ Rm.

For the kernel, let x⃗1, x⃗2 ∈ kerT , and x⃗ = ax⃗1 + bx⃗2. Then T (x⃗) = T (ax⃗1 + bx⃗2). By linearity,
then, T (x⃗) = aT (x⃗1) + bT (x⃗2) = 0⃗ + 0⃗ = 0⃗. So x⃗ ∈ kerT and kerT ⊆ Rn. ■

Part (c)

The image of T is the set of all linear combinations of the columns of
[
T
]
. Since some columns

may be redundant, we row reduce
[
T
]
and “retain” only the pivotal columns. A basis for

the image will then be the pivotal columns of the original matrix
[
T
]
(not the row-reduced

matrix).

For the kernel, we create a basis vector for each of the non-pivotal columns of the row-reduced
matrix. For each vector/non-pivotal column, insert a 1 into the entry for that non-pivotal
column, 0s for all other non-pivotal columns, and solve for the remaining entries. These vectors
will all be linearly independent, because the entry for each non-pivotal column will have a 1 in
only one basis vector, and 0 in the remaining basis vectors.

Part (d)

Since a basis for the image consists of all pivotal columns, say it is r, then dim Img T = r.
A basis for the kernel will consist of all non-pivotal columns, or dimkerT = n − r. Thus
dimkerT + dim Img T = n− r + r = n. ■
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Jimmy Tran Proofs Math E-23a (Fall 2023)

Proof 4.1

If v⃗1, . . . , v⃗k are eigenvectors of A : Rn → Rn with distinct eigenvalues λ1, . . . , λk, then they
are linearly independent.

Proof

Assume for contradiction that v⃗1, . . . , v⃗k are linearly dependent. Then there is a first v⃗j that
is a linear combination of its predecessors:

v⃗j = a1v⃗1 + · · ·+ aj−1v⃗j−1 (1)

where not all of the a1, . . . , aj−1 ∈ R are equal to 0.

First, we will multiply both sides of Equation (1) by A, and substitute since they are all
eigenvectors:

Av⃗j = a1Av⃗1 + · · ·+ aj−1Av⃗j−1 (2)

⇒ λj v⃗j = a1λ1v⃗1 + · · ·+ aj−1λj−1v⃗j−1 (3)

We can also multiply both sides of Equation (1) by λj :

λj v⃗j = a1λj v⃗1 + · · ·+ aj−1λj v⃗j−1 (4)

Now, we subtract Equation (3) from Equation (4). Since we are given that all the eigenvectors
are distinct, and not all of the ai’s are 0, then the following shows that v⃗1, . . . , v⃗j−1 are linearly
dependent :

0⃗ = a1(λj − λ1︸ ︷︷ ︸
̸=0

)v⃗1 + · · ·+ aj−1(λj − λj−1︸ ︷︷ ︸
̸=0

)v⃗j−1

However, we assumed that v⃗j was the first linearly dependent vector, a contradiction. So the
set of eigenvectors {v⃗1, . . . , v⃗k} must be linearly independent. ■
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Jimmy Tran Proofs Math E-23a (Fall 2023)

Proof 4.2

For a real n× n matrix A, each pi(t) is simple and has real roots if and only if there is a basis
of Rn consisting of the eigenvectors of A (an eigenbasis).

Proof

(⇒)

First calculate e⃗1, Ae⃗1, A
2e⃗1, . . . , A

me⃗1, where Ame⃗1 is the first linearly dependent vector.
Now consider the subspace E1 = span

{
e⃗1, Ae⃗1, . . . , A

m−1e⃗1
}
. We know that dimE1 = m;

p(A)e⃗1 = 0⃗ where, by assumption, p(t) has simple, real roots; p(t) is of degree m; and therefore
p(t) will have m distinct roots.

So we will find m eigenvectors v⃗1, . . . , v⃗m with distinct eigenvalues λ1, . . . , λm; these eigenvec-
tors will be linearly independent (Proof 4.1 ). By our algorithm, each v⃗i will be calculated as
v⃗i = q(A)e⃗1; that is, each v⃗i is a linear combination of e⃗1, Ae⃗1, . . . , A

m−1e⃗1. This means that
all the v⃗1, . . . , v⃗m ∈ E1. Since there are m linearly independent eigenvectors, and dimE1 = m,
the v⃗1, . . . , v⃗m form a basis for E1. Furthermore, since e⃗1 ∈ E1, then e⃗1 ∈ span {v⃗1, . . . , v⃗m}.

We repeat this process for starting vectors e⃗2, . . . , e⃗n; in each step, we will find some eigenvectors
(possibly some repeated). We then take the union of all eigenvectors. In addition, each e⃗i will
be in the span of the set of all eigenvectors we found. Therefore, the set of all eigenvectors
found form a basis for Rn.

(⇐)

Assume for contradiction that ∃w⃗ ∈ Rn for which p(t) has a repeated root λ∗. Then we can
write the polynomial as

p(t) = (t− λ∗)
2(t− λ1)(t− λ2) · · · (t− λk)

From this polynomial, we will find eigenvectors v⃗∗, v⃗1, v⃗2, . . . , v⃗k.

Consider our starting vector w⃗; since we assume that the eigenvectors form a basis for Rn, we
can write it as

w⃗ = a∗v⃗∗ + a1v⃗1 + · · ·+ akv⃗k.

We also know that p(A)w⃗ = 0⃗. So we can see that each factor (A − λiI) makes the term
(A−λiI)aiv⃗i = 0⃗ (since the v⃗i’s are eigenvectors). This includes (A−λ∗I)

2a∗v⃗∗ = 0⃗; it follows
that also (A− λ∗I)a∗v⃗∗ = 0⃗ (i.e., we don’t need the additional factor of (A− λ∗I) to make
the term equal to 0). This means there is another polynomial

p∗(t) = (t− λ∗)(t− λ1) · · · (t− λk)

with the property that p∗(A)w⃗ = 0⃗. However, the degree of p∗(t) is one less than the degree of
p(t); but we assumed that p(t) was the lowest degree polynomial for which p(A)w⃗ = 0⃗. This is
because in our algorithm, we start with the vector w⃗, then calculate Aw⃗,A2w⃗, and so on, and
we stop as soon as we find a linear dependence (i.e., we would have first found a polynomial
with only simple roots). Since this is a contradiction, then there is not a polynomial with
repeated roots. ■
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Jimmy Tran Proofs Math E-23a (Fall 2023)

Proof 5.1

(i) Define “countably infinite”.

(ii) Prove that the set of positive rational numbers is countably infinite.

(iii) Prove that the set of real numbers in the interval [0, 1], as represented by infinite decimals,
is not countable.

Proof

Part (a)

A set A is countably infinite if and only if there exists a bijection f : N → A.

Part (b)

We can organize Q+ in a two-dimensional table, with the numerator along the columns and
denominator along the rows.

1 2 3 4 · · ·

1 1/1 2/1 3/1 4/1 · · ·
2 1/2 2/2 3/2 4/2 · · ·
3 1/3 2/3 · · ·
4 1/4 · · ·
...

We can then give each of the elements an index, starting from the top-left, and moving
diagonally. We skip any “repeats”; e.g., 2/2 is the same as 1/1. So the elements could be
listed as {1/1, 2/1, 1/2, 1/3, 3/1, 4/1, 3/2, 2/3, 1/4, . . . }. Therefore, since each unique
rational number has a unique index in N, there is a bijection f : N → Q+. ■

Part (c)

Assume for contradiction that there is some bijection f : N → R[0,1]. We can list the elements:

r1 = 0.14375 . . .

r2 = 0.25980 . . .

r3 = 0.37214 . . .

r4 = 0.12359 . . .

...

We can create a number x that is not in the list by choosing the kth digit of rk, for all k
(in red above). We will then change that digit j 7→ 9− j; so the first digit of r1 is 1, which
becomes 8. Then x = 0.8474 . . . . However, for all k, the kth digit of x is different from the
kth digit of rk (by construction), so x ̸= rk for all k, and the list is not surjective. Therefore,
R[0,1] is not countable. ■
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Jimmy Tran Proofs Math E-23a (Fall 2023)

Proof 5.2 (The Archimedean Property of R)

Use the Completeness Axiom of R to prove that for any two positive real numbers a and b,
there exists a positive integer n such that na > b.

Proof

Assume for contradiction that

∃a, b ∈ R+ : ∀n > 0, na ≤ b.

Consider the set S = {x ∈ R : x = na, n ∈ N}; that is, the set S consists of multiples of a.
We know that S is nonempty, because a ∈ S. We also know that S is bounded above, because
b is an upper bound by assumption: na ≤ b.

So by the Completeness Axiom, S has a least upper bound (or supremum). We will call this
y = supS. Since a > 0, then y − a < y, so y − a is not an upper bound for S. That means
∃x ∈ S : x > y − a; we can write this as

na > y − a

⇒ (n+ 1)a > y

Clearly, (n+ 1)a ∈ S (it is a multiple of a); however, y was supposed to be an upper bound
for S, yet we’ve found an element of S that is bigger. Since this is a contradiction, the
Archimedean Property of R must be true. ■

12



Jimmy Tran Proofs Math E-23a (Fall 2023)

Proof 5.3

Suppose that sn ̸= 0 for all n and that s = lim sn > 0.

Prove that ∃N such that ∀n > N , sn > s/2 and that 1
sn

converges to 1
s .

Proof

Part (a)

Set ε1 = s
2 . Because limn→∞ sn = s, ∃N1 : ∀n > N1, |sn − s| < s

2 . We can rewrite the last
inequality as

−s

2
< sn − s <

s

2

⇒ s− s

2
< sn < s+

s

2

⇒ s

2
< sn <

3s

2

So we have shown that sn > s/2.

Part (b)

∀ε > 0, choose N2 such that ∀n > N2, |s− sn| < ε s
2

2 .

Then ∀n > max{N1, N2}, ∣∣∣∣ 1sn − 1

s

∣∣∣∣ = ∣∣∣∣s− sn
sns

∣∣∣∣
=

|s− sn|
sns

<
ε s

2

2
s
2s

= ε

So, lim 1
sn

= 1
s . ■
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Proof 5.4

Suppose that lim sn = +∞ and lim tn > 0. Prove that lim sntn = +∞.

Proof

Since (tn) converges, let lim tn = t. Then, ∀ε > 0, ∃N : ∀n > N , |tn − t| < ε.

Let ε = t
2 ; then ∃Nt : ∀n > Nt, |tn − t| < t

2 , which we can rewrite as (see Proof 5.3a)

tn >
t

2
.

Since (sn) diverges, ∀M > 0, ∃N : ∀n > N, sn > M .

Choose some Ns such that ∀n > Ns, sn > 2M
t .

Then ∀n > max{Ns, Nt}, both sn > 2M
t and tn > t

2 , so

sntn >
2M

t
· t
2

= M ■
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Proof 6.1

A Cauchy sequence is defined as a sequence where

∀ε > 0, ∃N : ∀m,n > N =⇒ |sn − sm| < ε

(i) Prove that any Cauchy sequence is bounded.

(ii) Prove that any convergent sequence is Cauchy.

(iii) Prove that any Cauchy sequence of real numbers is convergent.

Proof

Part (a)

Set ε = 1; then since (sn) is Cauchy, ∃N : ∀m,n > N, |sn − sm| < 1.

If we set m = N + 1, this becomes |sn − sN+1| < 1.

Then ∀n > N ,

|sn| = |sn − sm + sm|
⇒ |sn| ≤ |sn − sm|+ |sm| (Triangle inequality)

⇒ |sn| ≤ 1 + |sN+1| (Substitute m = N + 1)

SetM = max {|s1|, |s2|, . . . , |sN |, |sN+1|+ 1}. Then, ∀n, |sn| ≤ M . Therefore, (sn) is bounded.
■

Part (b)

Assume (sn) is convergent, where lim sn = s.

Fix ε > 0, and choose some N so that ∀n > N, |sn − s| < ε/2.

Then ∀m,n > N ,

|sn − sm| = |sn − s+ s− sm|
≤ |sn − s|+ |s− sm| (Triangle inequality)

< ε/2 + ε/2

= ε

Therefore, (sn) is Cauchy. ■

Part (c)

Assume for contradiction that there is a sequence (sn) that is Cauchy but is not convergent.
Then lim inf sn ̸= lim sup sn (see Topic 6 from lecture), and neither limit equals +∞.

We can choose some ε > 0 with the property lim sup sn − lim inf sn = 3ε.

15
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By definition, ∀N, ∃n > N : sn > lim sup sn − ε, and ∀N, ∃m > N : sm < lim inf sn + ε. Then

sn − sm > (lim sup sn − ε)− (lim inf sn + ε)

= lim sup sn − lim inf sn − 2ε

= ε

So ∃ε > 0 : ∀N, ∃m,n > N for which |sn − sm| > ε, a contradiction. So (sn) is convergent. ■
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Proof 6.2: Bolzano-Weierstrass

(i) Prove that any bounded increasing sequence converges. (You may assume without addi-
tional proof the corresponding result, that any bounded decreasing sequence converges.)

(ii) Prove that every sequence (sn) has a monotonic subsequence.

(iii) Prove the Bolzano-Weierstrass Theorem: every bounded sequence has a convergent
subsequence.

Proof

Part (a)

By the Completeness Axiom, any bounded sequence of numbers has a supremum: sup sk = s.
So ∀k, sk ≤ s.

Consider any ε > 0; then s− ε < s, so s− ε is not an upper bound. Then ∃N : s− ε < sN ≤ s.

Since (sk) is increasing, ∀k > N, sk ≥ sN , so

s− ε < sN ≤ sk ≤ s

This means that |sk − s| < ε, so (sk) converges. ■

Part (b)

Define a dominant term of a sequence as a term that is greater than all terms after it. (sn)
has either infinitely many or finitely many dominant terms.

• If there are infinitely many, then the dominant terms form a decreasing subsequence.

• If there are finitely many, ∃sN that is the last dominant term. This means that sN+1

is not a dominant term; we pick this as the first element of our subsequence. Similarly,
there is some element after sN+1 that is greater; we pick this as the next element of the
subsequence. Since that term was not dominant, we keep doing this. Therefore, we have
constructed an increasing subsequence.

Therefore, (sn) has a monotonic subsequence. ■

Part (c)

We’ve shown that every (bounded) sequence has a monotonic subsequence. Furthermore,
the monotonic subsequence of a bounded sequence is itself bounded. We also proved that
every monotonic bounded subsequence converges. Therefore, every bounded sequence has a
subsequence that converges. ■
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Proof 6.3

(i) Define “Hausdorff space”, and prove that in a Hausdorff space the limit of a sequence is
unique.

(ii) Prove that Rn, with the topology defined by open balls, is a Hausdorff space.

Proof

Part (a)

A Hausdorff space is a set with the following topology. Given any two distinct elements a and
b, we can find open sets A and B with a ∈ A, b ∈ B, and A ∩B = ∅.

Suppose that (sn) → a, and assume A,B are open sets such that A ∩B = ∅.
Since A is an open set with a ∈ A, ∃N : ∀n > N, sn ∈ A. Since A and B are disjoint, then
all sn ̸∈ B. But B is an open set with b ∈ B. So sn does not converge to b.

Therefore, if a and b are distinct, a sequence cannot converge to both a and b in a Hausdorff
space.

■

Part (b)

Let a⃗ ̸= b⃗; then
∣∣∣⃗a− b⃗

∣∣∣ = ε > 0. Let r = ε/4; and let A = Br (⃗a) and B = Br (⃗b) be open balls.

Assume for contradiction that A ∩ B ̸= ∅; so ∃x⃗ ∈ Rn : x⃗ ∈ A ∩ B. Then since x⃗ ∈ A,

|x⃗− a⃗| < ε/4; similarly, x⃗ ∈ B =⇒
∣∣∣x⃗− b⃗

∣∣∣ < ε/4.

Then ∣∣∣⃗a− b⃗
∣∣∣ = ∣∣∣⃗a− x⃗+ x⃗− b⃗

∣∣∣
≤ |⃗a− x⃗|+

∣∣∣x⃗− b⃗
∣∣∣

< ε/4 + ε/4

= ε/2

But we assumed that
∣∣∣⃗a− b⃗

∣∣∣ = ε, and since ε > 0, ε < ε/2 is a contradiction. Therefore, Rn is

a Hausdorff space. ■
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Proof 7.1

(i) If function f is continuous, every sequence is good.

Given that function f : Rk → Rm is continuous at x⃗0, prove that every sequence such
that x⃗n → x⃗0 is a “good sequence” in the sense that f(x⃗n) converges to f(x⃗0).

(ii) If function f is discontinuous, there exists a bad sequence.

Given that function f : Rk → Rm is discontinuous at x⃗0, show how to construct a “bad
sequence” such that x⃗n → x⃗0 but f(x⃗n) does not converge to f(x⃗0).

Proof

Part (a)

We are given that f : Rk → Rm is continuous at x⃗0; i.e.,

∀ε > 0, ∃δ > 0 : ∀x⃗ ∈ Rk, |x⃗− x⃗0| < δ =⇒ |f(x⃗)− f(x⃗0| < ε (1)

Consider any sequence x⃗n ∈ Rk such that (x⃗n) converges to x⃗0.

Then by the definition of convergence, ∀δ > 0, ∃N : ∀n > N, |x⃗n − x⃗0| < δ.

By Equation (1), then |f(x⃗n)− f(x⃗0)| < ε.

So ∀ε > 0, ∃N : ∀n > N, |f(x⃗n)− f(x⃗0)| < ε; in other words, f(x⃗n) → f(x⃗0), and every
sequence is a good sequence. ■

Part (b)

If f is discontinuous,

∃ε > 0 : ∀δ > 0, ∃x⃗ ∈ Rk : |x⃗− x⃗0| < δ ∧ |f(x⃗)− f(x⃗0)| ≥ ε

We will construct a bad sequence:

∀n ∈ N, set δn = 1
n . Then ∃x⃗n ∈ Rk : |x⃗n − x⃗0| < δn ∧ |f(x⃗n)− f(x⃗0)| ≥ ε.

Since |x⃗n − x⃗0| < 1
n , we can let N > 1

ε , so (x⃗n) converges to x⃗0. But since |f(x⃗n)− f(x⃗0)| ≥ ε,
(f(x⃗n)) does not converge to f(x⃗0). Therefore, we have found a bad sequence. ■
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Proof 7.2: The intermediate value theorem

Suppose that f : R → R is continuous on the interval [a, b] (with a < b), and f(a) < y < f(b).

Prove that there exists at least one x ∈ [a, b] such that f(x) = y.

Use Ross’s “no bad sequence” definition of continuity, not the epsilon-delta definition. Con-
structing the appropriate sequences requires some care.

Proof

Define a set S = {x ∈ [a, b] | f(x) < y}. S is not empty, because f(a) < y, so a ∈ S. And S is
bounded, because y < f(b), so b ̸∈ S. So, by the Completeness Axiom, S has a supremum:
x0 = supS.

We want to prove that f(x0) = y.

(≤)

Note that ∀n ∈ N, x0 − 1
n is not an upper bound of S. So ∃sn ∈ S : x0 − 1

n < sn ≤ x0. This
means that (sn) converges to x0 (by the Squeeze Lemma).

Since f is continuous, every sequence is a good sequence; then since (sn) → x0, f(sn) → f(x0),
or lim f(sn) = f(x0). Furthermore, ∀n, sn ∈ S; so by definition every f(sn) < y and therefore

lim f(sn) = f(x0) ≤ y .

(≥)

Now we construct another sequence (tn) ̸∈ S. For all n ∈ N, we define tn = min
{
x0 +

1
n , b
}
.

First, x0 ≤ b (because x0 is the least upper bound), and clearly x0 < x0 +
1
n for all n, so

x0 ≤ min
{
x0 +

1
n , b
}
; this means x0 ≤ tn. Furthermore, by definition tn ≤ x0 +

1
n . This gives

us

x0 ≤ tn ≤ x0 +
1

n

Then by the Squeeze Lemma, limn→∞ tn = x0. Since f is continuous, (tn) is a good sequence,
so lim f(tn) = f(x0).

By definition, ∀n, tn ̸∈ S, so f(tn) ≥ y; therefore, lim f(tn) = f(x0) ≥ y .

Since we’ve shown that f(x0) ≤ y ≤ f(x0), then y = f(x0). ■
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Proof 7.3

Using the Bolzano-Weierstrass theorem, prove that if function f : R → R is continuous on the
closed interval [a, b], then f is uniformly continuous on [a, b].

Proof

Prove the contrapositive: if f is not uniformly continuous on [a, b], then f is not continuous
for some x0 ∈ [a, b].

If f is not uniformly continuous, then

∃ε > 0 : ∀δ > 0, ∃x, y ∈ [a, b] : |x− y| < δ ∧ |f(x)− f(y)| ≥ ε

Set δ = 1
n . Then ∃xn, yn ∈ [a, b] : |xn − yn| < 1

n ∧ |f(xn)− f(yn)| ≥ ε.

These sequences (xn) and (yn) might not converge, but they are bounded on [a, b].

By the Bolzano-Weierstrass theorem, we can construct a convergent subsequence (xnk
) such

that limxnk
= x0 ∈ [a, b] (since a closed interval contains all its limit points).

We can also show that (ynk
) → x0:

|ynk
− x0| ≤ |ynk

− xnk
|︸ ︷︷ ︸

< 1
nk

+ |xnk
− x0|︸ ︷︷ ︸

xnk
→x0

so both terms can be made arbitrarily small. We can then conclude that lim ynk
= x0.

But what we seek from the earlier statement (by assumption) is that |f(xnk
)− f(ynk

)| ≥ ε,
so both f(xnk

) and f(ynk
) cannot both converge to the same value f(x0). So at least one of

(xnk
) or (ynk

) is a bad sequence.

Therefore, f is not continuous at x0 ∈ [a, b]. ■
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Proof 7.4

Prove that if f : R → R is uniformly continuous on a set S and (sn) is a Cauchy sequence in
S, then (f(sn)) is a Cauchy sequence.

Proof

Let ε > 0. Since f is uniformly continuous,

∃δ > 0 : ∀x, y ∈ S, |x− y| < δ =⇒ |f(x)− f(y)| < ε

It is also true that

∀sn, sm ∈ S, |sn − sm| < δ =⇒ |f(sn)− f(sm)| < ε

Since (sn) is Cauchy, ∃N : ∀n,m > N, |sn − sm| < δ. Then also |f(sn)− f(sm)| < ε, so f(sn)
is also Cauchy. ■
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Proof 8.1: Extreme Value Theorem

Let C be a compact subset of Rn. Let f : C → R be a continuous function (a real-valued
function). Then f has a supremum M and ∃b ∈ C (a maximum) where f(b) = M .

Proof

Part (a)

Assume for contradiction that there is no supremum M .

Create a sequence (x⃗n) ∈ C such that f(x⃗1) > 1, f(x⃗2) > 2, . . . , f(x⃗n) > n, . . . .

Since C is compact, by Bolzano-Weierstrass it has a convergent subsequence (x⃗nk
) ∈ C, with

(x⃗nk
) → a⃗ ∈ C.

By construction, f(x⃗nk
) > nk for all k, so (f(x⃗nk

)) does not converge. However, since
(x⃗nk

) → a⃗, this is a bad sequence. This contradicts our assumption that f was continuous, so
f must have a supremum.

Part (b)

Create a new sequence (x⃗n) ∈ C such that f(x⃗n) > M − 1/n. This sequence, by Bolzano-
Weierstrass, has a convergent subsequence (x⃗nk

) ∈ C that converges to some b⃗ ∈ C. Since f is

continuous, then f(x⃗nk
) → f (⃗b).

By construction, f(x⃗nk
) > M − 1

nk
, and also f(x⃗nk

) ≤ M . Together, this shows that
(f(x⃗nk

)) → M . Since limits are unique (Rn is a Hausdorff space), we must have that

f (⃗b) = M . ■
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Proof 8.2: Heine-Borel Theorem

For a compact set, every open cover contains a finite subcover.

If X ⊂ Rn is compact (closed and bounded) and U is any open cover of X, then U contains a
finite subcover: there exist finitely many open sets U1, U2, . . . , Um ∈ U such that

X ⊂
m⋃
i=1

Ui

Proof

Assume for contradiction that no such finite subcover exists.

Since X is bounded, first divide it into N (closed) unit squares. Since there is no finite
subcover, at least one of the closed squares S0 must require infinitely many of the open sets
Ui to cover it.

Next divide S0 into 4 smaller squares; at least 1 of these smaller squares S1 will require
infinitely many of the Ui to cover it.

Continue the process, which creates a sequence of nested compact sets:

S0 ⊃ S1 ⊃ S2 ⊃ · · ·

By the nested compact set theorem, the infinite intersection is not empty:

∞⋂
k=0

Sk ̸= ∅

So it contains some point x⃗ ∈ X; since x⃗ is in our original set, there must exist some U that
covers x⃗. And because U is open, it contains some ball around x⃗ with r > 0 : Br(x⃗) ⊂ U .

Since there’s an open ball around x⃗ in U , at some point one of the squares Sj must be in the
open ball: Br(x⃗) ⊃ Sj . Therefore Sj ⊂ U , and since it is a nested sequence, ∀i > j, Si ⊂ U .

But this is a contradiction, because we said each square Sk in the sequence required infinitely
many open sets to cover it, while we have found a single open set U that covers Sj .

Therefore, there must be a finite subcover of our open cover. ■
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Proof 9.1: Chain Rule

Assume the following:

• Function f is differentiable at a

• Function g is differentiable at f(a)

• There is an open interval J containing a on which f is defined and f(x) ̸= f(a) for x ̸= a
(without this restriction, you need the messy Case 2 on page 229).

• Function g is defined on the open interval I = f(J), which contains f(a).

Using the sequential definition of a limit, prove that the composite function g◦f is differentiable
at a and that

(g ◦ f)′(a) = g′(f(a)) · f ′(a)

Proof

Consider any sequence (xn) ∈ J for which (xn) → a. Since f is differentiable, f ′(a) =

limx→a
f(x)−f(a)

x−a . Also, the limit of sequences also converges:(
f(xn)− f(a)

xn − a

)
→ f ′(a)

Plugging (xn) into f gives us a new sequence, which we can call yn = f(xn). We know as well
that (yn) → f(a) because f is continuous (and every sequence is good).

Consider the difference quotient; we multiply by 1 and rearrange:

g(f(xn))− g(f(a))

xn − a
=

g(yn)− g(f(a))

xn − a
· yn − f(a)

yn − f(a)
=

g(yn)− g(f(a))

yn − f(a)
· f(xn)− f(a)

xn − a

Since g is differentiable at y = f(a), then for any sequence (yn) → f(a) the first term above
converges to g′(f(a)). The second term is just f ′(a).

Altogether, since the limit of a product is the product of the limits, we have

lim
n→∞

g(f(xn))− g(f(a))

xn − a
= g′(f(a)) · f ′(a)

■
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Proof 9.2: Rolle’s Theorem and Mean Value Theorem

(i) Prove Rolle’s Theorem: if f is a continuous function on [a, b] that is differentiable on (a, b)
and satisfies f(a) = f(b), then there exists at least one x in (a, b) such that f ′(x) = 0.

(ii) Using Rolle’s Theorem, prove the Mean Value Theorem: if f is a continuous function on
[a, b] that is differentiable on (a, b), then there exists at least one x in (a, b) such that

f ′(x) =
f(b)− f(a)

b− a

Proof

Part (a)

Since f is continuous on the closed and bounded interval [a, b], by the Extreme Value Theorem,
f has a minimum (x0) and a maximum (y0) on [a, b]. So ∀x ∈ [a, b], f(x0) ≤ f(x) ≤ f(y0).

• If the minimum and maximum occur at the endpoints a and b, then since f(a) = f(b)
(by assumption), f is constant. That is, f ′(x) = 0 everywhere on (a, b).

• Otherwise, at least one of the min or max occurs at the interior of (a, b). By a previous
proof (Topic 8 in Module 9 ), then f ′(x) = 0 there.

Part (b)

Define L(x) to be the line connecting the endpoints. So by the point-slope formula of a line,
we have

L(x) = f(a) +
f(b)− f(a)

b− a
(x− a)

Also define g(x) = f(x) − L(x); then g(a) = g(b) = 0. Since L(x) is continuous and
differentiable (it is just a first-order, linear function) and f(x) is continuous and differentiable
(by assumption), then g(x) is also differentiable on (a, b) and continuous on [a, b]. Therefore,
g(x) satisfies the conditions for Rolle’s Theorem: ∃x0 ∈ (a, b) : g′(x0) = 0. Then,

g′(x0) = f ′(x0)− L′(x0) = 0

⇒ f ′(x0) = L′(x0)

=
f(b)− f(a)

b− a
■
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Proof 9.3: Derivative of an inverse function

Suppose that f is a one-to-one continuous function on open interval I (either strictly increasing
or strictly decreasing). Let open interval J = f(I). Define the inverse function g : J → I such
that

g ◦ f(x) = x for x ∈ I

f ◦ g(y) = y for y ∈ J

And define y0 = f(x0).

Take it as proved that g is continuous at y0.

Prove that, if f is differentiable at x0 and f ′(x0) ̸= 0, then

lim
y→y0

g(y)− g(y0)

y − y0
=

1

f ′(x0)

Proof

Consider any sequence (yn) ∈ J for which (yn) → y0. Since g is continuous, then (g(yn)) →
g(y0) as well.

Since g is the inverse function of f , then f(x) = y and g(y) = x, so (xn) → x0 as well. By
assumption, f is differentiable at x0, so

lim
n→∞

f(xn)− f(x0)

xn − x0
= f ′(x0)

For sequences, we’ve shown that lim 1
sn

= 1
lim sn

, so we can rewrite the above as

lim
n→∞

xn − x0
f(xn)− f(x0)

=
1

f ′(x0)

We can then substitute into the above equation since g is the inverse of f :

lim
n→∞

g(yn)− g(y0)

yn − y0
=

1

f ′(x0)

Since this is true for any arbitrary (yn) → y0, the function limit exists and is

g′(y0) = lim
y→y0

g(y)− g(y0)

y − y0
=

1

f ′(x0)

■
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Proof 10.1: The product rule in Rn

Let U ⊂ Rn be an open set, and let f and g be functions from U to R. Prove that if f and g
are differentiable at a then so is fg, and that

[D(fg)(a)] = f(a)[Dg(a)] + g(a)[Df(a)]

Proof

The remainder is

r(⃗h) = f(a+ h⃗)g(a+ h⃗)− f(a)g(a)− f(a)[Dg(a)]⃗h− g(a)[Df(a)]⃗h

We will rewrite this as r(⃗h) = r1(⃗h) + r2(⃗h) + r3(⃗h) by adding and subtracting some terms.

r1(⃗h) = f(a+ h⃗)g(a+ h⃗)− f(a)g(a+ h⃗)− g(a+ h⃗)[Df(a)]⃗h

r2(⃗h) = f(a)g(a+ h⃗)− f(a)g(a)− f(a)[Dg(a)]⃗h

r3(⃗h) = g(a+ h⃗)[Df(a)]⃗h− g(a)[Df(a)]⃗h

We will look at the limits separately:

lim
h⃗→0⃗

r1(⃗h)∣∣∣⃗h∣∣∣ = lim
h⃗→0⃗

f(a+ h⃗)− f(a)− [Df(a)]⃗h∣∣∣⃗h∣∣∣︸ ︷︷ ︸
→ 0 because

f is differentiable

g(a+ h⃗)︸ ︷︷ ︸
→ g(a)

(bounded)

= 0

lim
h⃗→0⃗

r2(⃗h)∣∣∣⃗h∣∣∣ = lim
h⃗→0⃗

g(a+ h⃗)− g(a)− [Dg(a)]⃗h∣∣∣⃗h∣∣∣︸ ︷︷ ︸
→ 0 because

g is differentiable

f(a)︸︷︷︸
constant

= 0

lim
h⃗→0⃗

r3(⃗h)∣∣∣⃗h∣∣∣ = lim
h⃗→0⃗

(
g(a+ h⃗)− g(a)

)
︸ ︷︷ ︸

→ 0 because
g is continuous

[Df(a)]︸ ︷︷ ︸
fixed
matrix

h⃗∣∣∣⃗h∣∣∣︸︷︷︸
unit
vector

= 0

The final limit equals 0 because the latter two terms together are bounded.

Since the limit of each of the remainders divided by the length of h⃗ equals 0, the limit of their
sum equals 0:

lim
h⃗→0⃗

r(⃗h)∣∣∣⃗h∣∣∣ = 0

Therefore,
[D(fg)(a)] = f(a)[Dg(a)] + g(a)[Df(a)] ■
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Proof 10.2

Using the mean value theorem, prove that if a function f : R2 → R has partial derivatives D1f
and D2f that are continuous at a, it is differentiable at a and its derivative is the Jacobian
matrix

[
D1f(a) D2f(a)

]
.

Proof

Let a =

(
a1
a2

)
and h⃗ =

[
h1
h2

]
. So a+ h⃗ =

(
a1 + h1
a2 + h2

)
.

If

[
D1f

(
a1
a2

)
D2f

(
a1
a2

)]
is the derivative, then the remainder is

r
(
h⃗
)
= r

(
h1
h2

)
= f(a+ h⃗)− f(a)−

[
D1f

(
a1
a2

)
D2f

(
a1
a2

)][
h1
h2

]
= f

(
a1 + h1
a2 + h2

)
− f

(
a1
a2

)
−D1f

(
a1
a2

)
h1 −D2f

(
a1
a2

)
h2

We will split the remainder into two terms (after adding and subtracting a new term):

r1

(
h⃗
)
= f

(
a1 + h1
a2 + h2

)
− f

(
a1

a2 + h2

)
−D1f

(
a1
a2

)
h1

r2

(
h⃗
)
= f

(
a1

a2 + h2

)
− f

(
a1
a2

)
−D2f

(
a1
a2

)
h2

For r1(⃗h), apply the Mean Value Theorem (since it only varies in its first component):

∃b1 ∈ (a1, a1 + h1) : D1f

(
b1

a2 + h2

)
h1 = f

(
a1 + h1
a2 + h2

)
− f

(
a1

a2 + h2

)
And for r2(⃗h):

∃b2 ∈ (a2, a2 + h2) : D2f

(
a1
b2

)
h2 = f

(
a1

a2 + h2

)
− f

(
a1
a2

)
We will substitute these values into the remainder terms and take the limit.

As h⃗ → 0⃗, since b1 ∈ (a1, a1 + h1), then b1 → a1 and (a2 + h2) → a2.

And since D1f is continuous, all sequences are good. So

(
D1f

(
b1

a2 + h2

))
→ D1f

(
a1
a2

)
.

Then

lim
h⃗→0⃗

r1

(
h⃗
)

∣∣∣⃗h∣∣∣ = lim
h⃗→0⃗

(
D1f

(
b1

a2 + h2

)
−D1f

(
a1
a2

))
︸ ︷︷ ︸

→ 0

h1∣∣∣⃗h∣∣∣︸︷︷︸
bounded

= 0

The argument for r2(⃗h) is the same, so

lim
h⃗→0⃗

r(⃗h)∣∣∣⃗h∣∣∣ = 0

and the function is differentiable. ■
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Proof 11.1: The Implicit Function Theorem

Let W be an open subset of Rn, and let F : W → Rn−k be a C1 mapping such that F(c) = 0.
Assume that

[
DF(c)

]
is onto.

(i) Prove that the n variables can be ordered so that the first n− k columns of
[
DF(c)

]
are

linearly independent and that
[
DF(c)

]
=
[
A | B

]
where A is an invertible (n−k)×(n−k)

matrix.

Set c =

(
a
b

)
, where a are the n− k passive variables and b are the k active variables. Let

g be the “implicit function” from a neighborhood of b to a neighborhood of a such that

g(b) = a and F

(
g(y)
y

)
= 0.

(ii) Prove that
[
Dg(b)

]
= −A−1B.

Proof

Part (a)

Since F : W ⊂ Rn → Rn−k,
[
DF

]
is a (n− k)× n matrix. And since

[
DF(c)

]
is onto (Rn−k),

all n− k rows are independent, which means we have n− k pivotal columns.

We reorder the variables so that the n− k passive variables are first; then we have a square
matrix A with n− k independent columns. Therefore, A is invertible.

Part (b)

Let c =

(
a
b

)
, such that a has n − k components and b has k components. If b changes a

small amount, to a general point y, how does a need to change to x = g(y) so that we still

have F

(
x
y

)
= 0⃗?

We start with F

(
g(y)
y

)
= 0⃗ and take the derivative of both sides with respect to y (using

the chain rule):

[
DF(c)

] [Dg(b)
Ik

]
= 0⃗

⇒
[
A | B

] [Dg(b)
Ik

]
= 0⃗

⇒ A
[
Dg(b)

]
+BIk = 0⃗

⇒
[
Dg(b)

]
= −A−1B ■
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Proof 11.2: Tangent space as a kernel

Suppose that U ⊂ Rn is an open subset, F : U → Rn−k is a C1 mapping, and manifold M can
be described as the set of points that satisfy F(z) = 0. Use the implicit function theorem to
show that if

[
DF(c)

]
is onto for c ∈ M , then the tangent space TcM is the kernel of

[
DF(c)

]
.

You may assume that the variables have been numbered so that when you row-reduce
[
DF(c)

]
,

the first n− k columns are pivotal.

Proof

(⊆)

Since F : Rn → Rn−k, then
[
DF(c)

]
will be a (n− k)× n matrix. By assumption, this matrix

is onto, so there will be (n− k) independent columns. So the matrix A (from the first n− k
columns) will be invertible. And by the Rank-Nullity Theorem, there will be k nonpivotal
columns, and dim ker

[
DF(c)

]
= k.

We know that the manifold will also be the graph of some implicit function expressing the
passive variables x as a function of the active variables y: x = g(y). Near the point c, we can
say that a = g(b), and by the Implicit Function Theorem,

[
Dg(b)

]
= A−1B.

The tangent space of M at c is defined as the graph of
[
Dg(b)

]
so that vectors in TcM are of

the form

ż =

[
ẋ
ẏ

]
=

[[
Dg(b)

]
ẏ

ẏ

]
=

[
−A−1Bẏ

ẏ

]
=⇒

[
DF(c)

]
ż =

[
A | B

] [−A−1Bẏ
ẏ

]
= −AA−1Bẏ +Bẏ

= −Bẏ +Bẏ

= 0⃗

This shows that ż ∈ TcM =⇒ ż ∈ ker
[
DF(c)

]
, so TcM ⊆ ker

[
DF(c)

]
.

(⊇)

If ż =

[
ẋ
ẏ

]
∈ ker

[
DF(c)

]
, then

[
DF(c)

] [ẋ
ẏ

]
= 0⃗

=⇒
[
A | B

] [ẋ
ẏ

]
= 0⃗

=⇒ Aẋ+Bẏ = 0⃗

=⇒ ẋ = −A−1Bẏ

=
[
Dg(b)

]
ẏ
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This shows that ż ∈ TcM , so ker
[
DF(c)

]
⊆ TcM .

Taken together, we’ve shown that TcM = ker
[
DF(c)

]
. ■
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Proof 12.1: Constrained Critical Points and Tangent Space

Let U ∈ Rn be an open subset and let f : U → R be a C1 (continuously differentiable) function.
Let M ⊂ Rn be a k-dimensional manifold.

Prove that c ∈ M ∩ U is a critical point of f restricted to M if and only if

TcM ⊂ ker
[
Df(c)

]
Proof

We have a manifold M that is given by a parametrization γ : Rk → Rn; this expresses points
on the manifold as a function of some parameters: z = γ(u).

We also have a function f : Rn → R (a “goal” function); we want to optimize f but only for
points z on the manifold M . We take the derivative:[

D (f ◦ γ) (u)
]
=
[
Df(γ(u))

] [
Dγ(u)

]
= 0

(⇒)

If c = γ(u) is a critical point, then
[
Df(c)

] [
Dγ(u)

]
= 0.

We also know that TcM = Img
[
Dγ(u)

]
, which means ∀v⃗ ∈ TcM,∃w⃗ : v⃗ =

[
Dγ(u)

]
w⃗. Then[

Df(c)
]
v⃗ =

[
Df(c)

] [
Dγ(u)

]︸ ︷︷ ︸
=0

w⃗ = 0⃗

So v⃗ ∈ TcM =⇒ v⃗ ∈ ker
[
Df(c)

]
, and TcM ⊂ ker

[
Df(c)

]
.

(⇐)

If TcM ⊂ ker
[
Df(c)

]
, then Img

[
Dγ(u)

]
⊂ ker

[
Df(c)

]
. So, since the image is the space

spanned by the columns of
[
Dγ
]
, any of its columns are in the kernel. Therefore,[

Df(c)
] [

Dγ(u)
]
= 0

⇒
[
D(f ◦ γ)(u)

]
= 0

So f ◦ γ has a critical point at u, and in turn f has a critical point (constrained to being on
M) at c = γ(u). ■

33



Jimmy Tran Proofs Math E-23a (Fall 2023)

Proof 12.2: Lagrange Multipliers for Constrained Critical Points

Let M be a manifold known by a real-valued C1 function F(z) = 0, where F goes from an
open subset U of Rn to Rm and

[
DF(z)

]
is onto.

Let f : U → R be a C1 function.

Prove that c ∈ M is a critical point of f restricted to M if and only if there exist m Lagrange
multipliers λ1, . . . , λm such that[

Df(c)
]
= λ1

[
DF1(c)

]
+ · · ·+ λm

[
DFm(c)

]
Proof

[
DF

]
is a m× n matrix (partial derivative of each constraint equation):

[
DF

]
=


DF1

DF2
...

DFm


(⇒)

Assume that λ1, λ2, . . . , λm exist so that
[
Df
]
= λ1

[
DF1

]
+ λ2

[
DF2

]
+ · · ·+ λm

[
DFm

]
.

If v⃗ ∈ TcM = ker
[
DF

]
, then

[
DF

]
v⃗ = 0⃗. So all of the

[
DFi

]
v⃗ = 0, and

λ1

[
DF1

]
v⃗ + λ2

[
DF2

]
v⃗ + · · ·+ λm

[
DFm

]
v⃗ = 0⃗

⇒
[
Df
]
v⃗ = 0⃗

The last equation above means v⃗ ∈ ker
[
Df
]
. So TcM ⊂ ker

[
Df
]
, which, from Proof 12.1,

means c is a critical point of f constrained to the manifold M .

(⇐)

Assume c is a critical point of f constrained to M . Then (by Proof 12.1 )

TcM ⊂ ker
[
Df(c)

]
=⇒ ker

[
DF

]
⊂ ker

[
Df
]
.

Since
[
DF

]
is onto, the rows of

[
DF

]
are linearly independent.

Assume for contradiction that no such Lagrange multipliers exist where
[
Df
]
= λ1

[
DF1

]
+

λ2

[
DF2

]
+ · · ·+ λm

[
DFm

]
. Then

[
Df
]
is not in the span of the rows of

[
DF

]
.

We can create a new matrix A =
[
DF1 DF2 · · · DFm Df

]T
which will have linearly

independent rows and thus is onto. Since A is onto, ∃v⃗ : Av⃗ =
[
0 0 · · · 0 1

]T
. So[

DF1

]
v⃗ = 0,

[
DF2

]
v⃗ = 0, . . . ,

[
DFm

]
v⃗ = 0︸ ︷︷ ︸

v⃗∈ker
[
DF

] ,
[
Df
]
v⃗ = 1︸ ︷︷ ︸

v⃗ ̸∈ker
[
Df

]
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Together, these imply that ker
[
DF

]
̸⊂ ker

[
Df
]
, or TcM ̸⊂ ker

[
Df
]
, which contradicts our

assumption that c is a critical point of f on M .

Therefore, if there is a critical point of a function on a manifold, the Lagrange multipliers
must exist. ■
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Proof 12.3: The Root Test

Consider the infinite series
∑

an and let α = lim sup |an|
1
n .

Using the Comparison Test, prove the following statements about
∑

an:

(i) The series converges absolutely if α < 1

(ii) The series diverges if α > 1

(iii) If α = 1, then nothing can be deduced conclusively about the behavior of the series

Proof

Part (a)

Let lim sup |an|
1
n = α < 1. Then ∀ε > 0, ∃N : ∀n > N, |an|

1
n < α + ε, which implies

|an| < (α+ ε)n.

We choose ε to be small enough so that α+ ε < 1, and find N for which the above is true.
Then

∑∞
n=N+1(α+ ε)n = (α+ ε)N+1

∑∞
n=1(α+ ε)n is a geometric series with r = α+ ε < 1,

which converges.

Therefore,
∑∞

n=N+1 |an| also converges by the Comparison Test. Since
∑N

n=1 |an| is just a
constant, the infinite series

∑∞
n=1 |an| converges, meaning

∑
an converges absolutely.

Part (b)

Let lim sup |an|
1
n = α > 1. Then ∀ε > 0, ∀N, ∃n > N : |an|

1
n > α− ε.

We choose ε small enough so that α − ε > 1. then ∀N, ∃n > N : |an|
1
n > α − ε > 1. This

implies that |an| > 1, so lim an ̸= 0, and therefore
∑

an diverges.

Part (c)

We will choose two series.

First, let an = 1
n . Then α = lim sup

(
1
n

) 1
n = lim 1

n1/n = 1, but we already showed that
∑ 1

n
diverges.

Second, let an = 1
n2 . Then α = lim sup

(
1
n2

) 1
n = lim

(
1

n1/n

)2
= 1, but we already showed that∑ 1

n2 converges.

Since we have shown that α = 1 for series that converge or diverge, nothing can be deduced
conclusively by the Root Test. ■
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Proof 13.1: Taylor’s Theorem With Remainder

Let f be defined on (a, b) with a < 0 < b. Suppose that the nth derivative f (n) exists on (a, b).

Define the remainder

Rn(x) = f(x)−
n−1∑
k=0

f (k)(0)

k!
xk

Prove, by repeated use of Rolle’s theorem, that for each x ̸= 0 in (a, b), there is some y between
0 and x for which

Rn(x) =
f (n)(y)

n!
xn

Proof

Fix some x ̸= 0, and write Rn(x) =
Mxn

n! . We want to show that for some y ∈ (0, x), f (n)(y) =
M .

We’ll create a “helper function”, and evaluate it at 0 and x:

g(t) =
n−1∑
k=0

f (k)(0)

k!
tk − f(t) +

Mtn

n!

g(0) = f(0)− f(0) + 0 = 0

g(x) =
n−1∑
k=0

f (k)(0)

k!
xk − f(x) +

Mxn

n!
= 0

g is continuous on [0, x] and differentiable on (0, x), so by Rolle’s Theorem ∃x1 ∈ (0, x) :
g′(x1) = 0. We will calculate g′(t) and evaluate it at 0 and x1:

g′(t) =
n−1∑
k=1

f (k)(0)

k!
ktk−1 − f ′(t) +

Mntn−1

n!

g′(0) = f ′(0)− f ′(0) + 0 = 0

g′(x1) = 0 (Given by Rolle’s Theorem above)

We use Rolle’s Theorem again on g′(t): ∃x2 ∈ (0, x1) : g
′′(x2) = 0.

We keep doing this until ∃xn ∈ (0, xn−1) : g
(n)(xn) = 0.

Let y = xn. Then

g(n)(y) = 0 = 0− f (n)(y) +M =⇒ M = f (n)(y) y ∈ (0, x)

So Rn(x) =
f (n)(y)

n!
xn. ■
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Proof 13.2: Infinite Triangle Inequality

Starting from the triangle inequality for two vectors, prove the triangle inequality for m vectors
in Rn, then prove the “infinite triangle inequality”:∣∣∣∣∣

∞∑
i=1

a⃗i

∣∣∣∣∣ ≤
∞∑
i=1

|⃗ai|

You may assume that the series
∑∞

i=1 a⃗i is “absolutely summable” (the infinite series of lengths
on the right is convergent) but you must prove that this series is “summable” (infinite sum of
vectors on the left is convergent).

You may use Theorems 0.5.8 (if
∑∞

n=1 |an| converges, then so does
∑∞

n=1 an) and 1.5.13 (a
sequence of vectors in Rn converges if and only if each component converges).

Proof

We can write the ith vector in our sequence a⃗i =


ai1
ai2
...

ain

 ∈ Rn. So aij is the jth component of

the ith vector in the series. Furthermore, |aij | ≤ |⃗ai| =
√
a2i1 + a2i2 + · · ·+ a2in.

By the Comparison Test, given that
∑∞

i=1 |⃗ai| converges, then
∑∞

i=1 |aij | also converges for any
component j. And since absolute convergence implies convergence, then

∑∞
i=1 aij converges.

And given that if a series of vector components converges, then the series of vectors converges.
So
∑∞

i=1 a⃗i converges to some vector s⃗.

For some finite N , we want to show that
∣∣∣∑N

i=1 a⃗i

∣∣∣ ≤∑N
i=1 |⃗ai|. We will prove by induction.

Base case (n = 2): |⃗a1 + a⃗2| ≤ |⃗a1|+ |⃗a2| is true by the triangle inequality (Proof 2.1b).

Induction step:∣∣∣∣∣
N+1∑
i=1

a⃗i

∣∣∣∣∣ =
∣∣∣∣∣
N∑
i=1

a⃗i + a⃗N+1

∣∣∣∣∣ ≤
∣∣∣∣∣
N∑
i=1

a⃗i

∣∣∣∣∣+ |⃗aN+1| ≤
N∑
i=1

|⃗ai|+ |⃗aN+1| =
N+1∑
i=1

|⃗ai|

sN =
∑N

i=1 |⃗ai| is a sequence of partial sums which converges to some number
∑∞

i=1 |⃗ai| (which
is given to exist). So we have ∣∣∣∣∣

N∑
i=1

a⃗i

∣∣∣∣∣ ≤
N∑
i=1

|⃗ai| ≤
∞∑
i=1

|⃗ai|

tN ≤ sN ≤ s

Since all of the above are nonnegative, tN ∈ [0, s] for all N . So limN→∞ tN ∈ [0, s], and

lim
N→∞

tN =

∣∣∣∣∣
∞∑
i=1

a⃗i

∣∣∣∣∣ ≤
∞∑
i=1

|⃗ai| = s

■
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