
Math E-23c - Mathematics for Computation and Data

Science

Proofs

Jimmy Tran1

Spring 2024

1Originally scribed by Chris Watson. Adapted with permission.



Jimmy Tran Proofs Math E-23c (Spring 2024)

Preface

Math E–23c is the second half of a moderately rigorous sequence in linear algebra, real analysis,
and multivariable (integral) calculus. It is aimed at students who want to prove the theorems
they later use, yet care just as much about applying those results in computer science, statistics,
data science, and economics. Topics span discrete mathematics, vector spaces, infinite series, the
axiomatic foundations of probability, and integration, with hands-on work in the R programming
language.
These notes serve as a reference for proofs that students in the course are expected to know how to
recreate and teach to others.

Historical Note. Senior Lecturer Paul Bamberg designed Math 23c as an “alternative second half”
to Math 23b. The course deliberately traded most of 23b’s differential-forms material for probability,
statistics, and computation, thereby giving social-science, data-science, and industry-bound students
a direct path from a proof-based 23a foundation to the mathematics they will actually use. For many
years the Extension and College versions were cross-listed: the two registrations shared lectures,
problem sets, and exams—the catalog number was the only difference. As of Spring 2024, Math
E–23b’s differential-forms content (determinants, exterior derivative, Stokes’s theorem, etc.) was
folded into a revamped E–23c syllabus. This course therefore preserves the full, proof-oriented
curriculum while offering a single, streamlined pathway after Math E–23a.
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Proof 1 (Orthogonal Eigenbasis Implies Symmetric Matrix)

Let A be an n× n matrix of real numbers, with a basis of real orthogonal eigenvectors. Then A is
symmetric.

Proof

Since we have a basis of real eigenvectors, then we can diagonalize A as PDP−1, where

P =

 | | |
v⃗1 v⃗2 · · · v⃗n
| | |

 and D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


We can normalize each v⃗i by dividing by their lengths so that they are unit vectors. So we will work
with orthonormal eigenvectors.

Consider P TP :

P TP =


v⃗1
v⃗2
...
v⃗n


 | | |
v⃗1 v⃗2 · · · v⃗n
| | |

 =


v⃗1 · v⃗1 v⃗1 · v⃗2 · · · v⃗1 · v⃗n
v⃗2 · v⃗1 v⃗2 · v⃗2 · · · v⃗2 · v⃗n

...
...

. . .
...

v⃗n · v⃗1 v⃗n · v⃗2 · · · v⃗n · v⃗n


Since the vectors are orthonormal, v⃗i · v⃗i = 1 and v⃗i · v⃗j = 0 for i ̸= j. So P TP = In, which means
P−1 = P T .

So A = PDP−1 = PDP T . We take the tranpose of both sides:

AT =
(
PDP T

)T
=

(
P T

)T
DTP T (Use (AB)T = BTAT )

= PDP T (Since DT = D)

= A

Therefore, A must be symmetric. ■
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Proof 2 (Sum of Integrals)

Let f and g be two functions that are both integrable on [a, b]. Prove that their sum f + g is
integrable on [a, b], and that the integral of the sum equals the sum of the integrals:∫ b

a
f + g =

∫ b

a
f +

∫ b

a
g

Proof

Part (a)

We first look in any subinterval S, [tk−1, tk], of some partition P . In any S, the following two
statements are true for any f and g for all x ∈ S:

f(x) ≥ m(f, S) (m is the infimum)

g(x) ≥ m(g, S)

We can add these inequalities so that the following is true for all x ∈ S.

f(x) + g(x) ≥ m(f, S) +m(g, S)

⇐⇒ (f + g)(x) ≥ m(f, S) +m(g, S)

=⇒ m(f + g, S) ≥ m(f, S) +m(g, S)

⇒ m(f + g, S)(tk − tk−1) ≥ m(f, S)(tk − tk−1) +m(g, S)(tk − tk−1)

When we sum over all subintervals S of partition P , the above inequality will be

L(f + g, P ) ≥ L(f, P ) + L(g, P )

Similarly, with supremums we will get

U(f + g, P ) ≤ U(f, P ) + U(g, P )

For any function and fixed partition, L ≤ U , so after combining the above inequalities,

L(f, P ) + L(g, P ) ≤ L(f + g, P ) ≤ U(f + g, P ) ≤ U(f, P ) + U(g, P ) (1)

Consider any ε > 0. Since f is integrable, ∃ a partition P1 such that U(f, P1)−L(f, P1) <
ε
2 . Since

g is integrable, ∃ a partition P2 such that U(g, P2)− L(g, P2) <
ε
2 .

Let P = P1 ∪ P2. For a finer partition, upper sums decrease and lower sums increase. So
U(f, P )− L(f, P ) < ε

2 and U(g, P )− L(g, P ) < ε
2 . We combine these inequalities:

(U(f, P ) + U(g, P ))− (L(f, P ) + L(g, P )) < ε

We see from Equation (1) that the rightmost term minus the leftmost term can be made less than ε,
so we then see that (because the two “inner terms” of the inequality are “squeezed”)

U(f + g, P )− L(f + g, P ) < ε

Therefore, f + g is integrable.
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Part (b)

Since f + g is integrable, we insert the integral into the middle of Equation (1):

L(f, P ) + L(g, P ) ≤ L(f + g, P ) ≤
∫

f + g ≤ U(f + g, P ) ≤ U(f, P ) + U(g, P )

We can also assert that

L(f, P ) + L(g, P ) ≤
∫

f +

∫
g ≤ U(f, P ) + U(g, P )

Since the difference between the leftmost and rightmost terms can be made less than ε, ∀ε > 0,
both

∫
f + g and

∫
f +

∫
g are squeezed between that difference. Therefore,∫

f + g =

∫
f +

∫
g

■
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Proof 3 (Improper Integral of e−x2
)

Define I(a) =
∫ a
−a e

−x2
dx =

∫ a
−a e

−y2 dy.
By considering integrals over circular and square regions, prove that

π
(
1− e−a2

)
< I(a)2 < π

(
1− e−2a2

)
and use a squeeze argument to show that∫ ∞

−∞
e−x2

dx = lim
a→∞

I(a) =
√
π

Proof

(a, a)

(−a,−a)

(
√
2a, 0)

We will consider integrals over circular and square re-
gions. In the figure to the left, the point at the center is
the origin. The black circle has radius a, the blue circle
has radius

√
2a. We will call the square region S, the

black circle C1, and the blue circle C2.

We start with the number (I(a))2, which is an integral
over the square S:

(I(a))2 =

∫ a

−a
e−x2

dx·
∫ a

−a
e−y2 dy =

∫∫
S

e−x2−y2 dx dy

Instead, we will calculate the integral of the same func-
tion over the circle with radius a (C1). We choose a partition of C1 which will consist of concentric
rings; for each ring, we take some function value multiplied by the area of each ring and add them.

An arbitrary ring will have radius r and width ∆r. For the function values, we look only at the

inside of the ring: f

(
x
y

)
= e−(x2+y2) = e−r2 . The area of each ring is approximately 2πr∆r. When

adding the rings, we calculate the following integral (substituting u = r2):∫∫
C1

e−x2−y2 dx dy =

∫ a

r=0
e−r22πr dr =

∫ a2

0
e−uπ du = π

(
1− e−a2

)

Next we look at the larger circle C2, which has radius
√
2a. By the same procedure as above (but

with different bounds), we see that∫∫
C2

e−x2−y2 dx dy = π
(
1− e−2a2

)
We now have, for all a, an inequality relating the areas of the circles and the square:

π
(
1− e−a2

)
≤ (I(a))2 ≤ π

(
1− e−2a2

)
In the limit as a→∞, both the LHS and RHS approach π, so lima→∞ (I(a))2 = π by the squeeze

lemma, and lima→∞ I(a) =
√
π. This is equivalent to

∫ ∞

−∞
e−x2

dx =
√
π. ■
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Proof 4 (Determinant of a Product)

Let A and B be n× n matrices, and C = AB. Prove that detC = detAdetB.

Proof

Consider C to be a matrix of column vectors: C =

 | | |
c⃗1 c⃗2 · · · c⃗n
| | |

. An arbitrary column

of C, by matrix multiplication, can be viewed as a linear combination of the columns of A:

c⃗k = Ab⃗k =

n∑
i=1

a⃗ibik. The determinant of C is a function of all the columns:

detC = det
[
c⃗1 c⃗2 · · · c⃗n

]
= det

[∑n
i1=1 a⃗i1bi1,1

∑n
i2=1 a⃗i2bi2,2 · · ·

∑n
in=1 a⃗inbin,n

]
=

n∑
i1=1

bi1,1 det
[⃗
ai1

∑n
i2=1 a⃗i2bi2,2 · · ·

∑n
in=1 a⃗inbin,n

]
(Multilinearity)

=

n∑
i1=1

n∑
i2=1

· · ·
n∑

in=1

bi1,1bi2,2 · · · bin,n det
[⃗
ai1 a⃗i2 · · · a⃗in

]
(Multilinearity n− 1 times)

There are nn terms in the above expression, but if any indices are repeated there will be repeated
columns, so the determinant for those terms equals 0 (by anti-symmetry). The only nonzero terms
will be when the indices are a permutation of n (of which there are n!), so we write this as

detC =
∑

i1,i2,...,in
∈Permn

bi1,1bi2,2 · · · bin,n det
[⃗
ai1 a⃗i2 · · · a⃗in

]

We can swap the columns a⃗ij to place them in order, so for some permutation σ, we write the above
as

detC =
∑

i1,i2,...,in
∈Permn

bi1,1bi2,2 · · · bin,n sgn(σ) det
[⃗
a1 a⃗2 · · · a⃗n

]
The latter term is the determinant of A, which does not depend on the indices, so we can take it
out of the sum:

detC = detA ·
∑

i1,i2,...,in
∈Permn

bi1,1bi2,2 · · · bin,n sgn(σ) (2)

This formula works for any matrix A; in particular, for A = In. So detA = det In = 1 (by the
normalization property). Then C = AB = B, so detB = detC, and substituting into Equation (2)
results in

detB =
∑

i1,i2,...,in
∈Permn

bi1,1bi2,2 · · · bin,n sgn(σ)

Therefore, from Equation (2) again we have detC = detAdetB. ■

7



Jimmy Tran Proofs Math E-23c (Spring 2024)

Proof 5 (Linear Change of Variables)

Suppose T : Rn → Rn is an invertible linear transformation, and f : Rn → R is integrable. Prove
that f ◦ T is also integrable, and that∫

Rn

f(y⃗)|dny⃗| = |detT |
∫
Rn

f(T (x⃗))|dnx⃗|

Proof

In parameter space, consider a dyadic partition DN made up of dyadic n-cubes C. These cubes
map by T to n-parallelograms T (C) that form a partition of original space T (DN ).

The integral (if it exists) is a limit of upper Riemann sums in parameter space:∫
Rn

f(T (x⃗))|detT ||dnx⃗| = lim
N→∞

U (f ◦ T,DN ) |detT |

= lim
N→∞

∑
C∈DN

MC (f ◦ T ) |detT | volnC

= lim
N→∞

∑
C∈DN

MC (f ◦ T ) voln T (C)

(The third line comes from Module 4, in which we showed that T volume-stretches an n-cube by a
factor of |detT |: volnT (C) = |detT | volnC.)

We can express the supremum in the above equation differently:

MC(f ◦ T ) = sup {f(T (x⃗)) | x⃗ ∈ C}
= sup {f(T (x⃗)) | T (x⃗) ∈ T (C)}
= sup {f(y⃗) | y⃗ ∈ T (C)}
= MT (C)f

Then, continuing from the first set of equalities,

= lim
N→∞

∑
C∈DN

MT (C)(f) voln T (C)

= lim
N→∞

∑
T (C)∈T (DN )

MT (C)(f) voln T (C)

= lim
N→∞

U(f, T (DN ))

=

∫
Rn

f(y⃗)|dny⃗| (Since f is integrable)

■
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Proof 6 (The Beta Distribution)

The beta distribution is defined as having a probability density function

µ(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 0 ≤ x ≤ 1

Use the “taxi-cab” change of variables formula to prove that this distribution is properly normalized:∫ 1

0
µ(x) dx = 1

You may use the definition of the Gamma function as

Γ(α) =

∫ ∞

0
xα−1e−x dx

Proof

Taxi-cab coordinates are the following, which we will invert:{
u = x+ y

v = y
x+y

Multiplying both together gives uv = y, so x = u− y = u(1− v). Then(
x
y

)
= Φ

(
u
v

)
=

(
u(1− v)

uv

)

The Jacobian is simply
[
DΦ

]
=

[
1− v −u
v u

]
, and det

[
DΦ

]
= u. By our definition, we can see that

0 ≤ u ≤ ∞ and 0 ≤ v ≤ 1, which we will use to change the bounds of integration.

Consider

Γ(α)Γ(β) =

∫ ∞

0
yα−1e−y dy

∫ ∞

0
xβ−1e−x dx

=

∫ ∞

0

∫ ∞

0
yα−1xβ−1e−(x+y) dx dy

=

∫ ∞

u=0

∫ 1

v=0
uα−1vα−1uβ−1(1− v)β−1e−uudv du (det

[
DΦ

]
= u)

=

∫ ∞

0
uα+β−1e−u du

∫ 1

0
vα−1(1− v)β−1 dv

= Γ(α+ β)

∫ 1

0
vα−1(1− v)β−1 dv

=⇒ 1 =
Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0
xα−1(1− x)β−1 dx (Dividing both sides by Γ(α)Γ(β))

⇐⇒ 1 =

∫ 1

0
µ(x) dx ■
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Proof 7 (Different Bases Have the Same Number of Elements)

Prove that any two bases of an (abstract) vector space V have the same number of elements (using
the fact that if a matrix is invertible, then it is square).

Proof

Consider a basis v = {v⃗1, . . . , v⃗k} with k elements, and w = {w⃗1, . . . , w⃗p} with p elements.
There are “concrete-to-abstract” functions such that

Rk Φv−−→ V
Φw←−− Rp

The following are true for Φw as well as Φv:

First, Φv is one-to-one (because basis vectors are linearly independent): for x⃗ ∈ V , if x⃗ = Φv (⃗a) =
Φv (⃗b), then x⃗ =

∑k
i=1 aiv⃗i =

∑k
i=1 biv⃗i, and

∑k
i=1(ai − bi)v⃗i = 0⃗. So ∀i, ai = bi, and a⃗ = b⃗.

Second, Φv is onto (because basis vectors are spanning): for all x⃗ ∈ V, ∃a1, . . . , ak : x⃗ =
∑k

i=1 aiv⃗i.
This is the same as writing x⃗ = Φv (⃗a).

So, Φv is one-to-one and onto, and thus invertible; that is, Φ−1
v exists.

So there are functions such that

Rk Φ−1
v←−− V

Φw←−− Rp

The composition Φ−1
v ◦ Φw takes a concrete vector in Rp to a concrete vector in Rk. Therefore, it

has a matrix, which will have size k × p.

Also, the composition of two invertible functions is invertible, so the k× p matrix is invertible. Since
only square matrices can be invertible, then k = p. Therefore, the bases have the same number of
elements. ■
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Proof 8 (Lebesgue Integral)

Define the Lebesgue integral and illustrate the definition
∫∞
0 e−x dx as a Lebesgue integral.

Proof

First write f(t) = e−t, t ∈ [0,∞) as a series of functions:

∞∑
k=0

fk(t) where fk(t) =

{
e−t k ≤ t ≤ k + 1

0 otherwise

First, test for Lebesgue integrability: calculate

Ik =

∫ ∞

0
|fk(t)|dt =

∫ k+1

k
e−t dt

Does
∑∞

k=0 Ik converge? Each Ik ≤ e−k (i.e., the area under each fk(t) is less than the area of a
rectangle), so we can use the comparison test for series:

∞∑
k=0

e−k =
∞∑
k=0

(
1

e

)k

converges

By the comparison test, then
∑∞

k=0 Ik converges, so the Lebesgue integral exists, and∫ ∞

0
f(t) dt =

∞∑
k=0

∫ ∞

0
fk(t) dt

=
∞∑
k=0

∫ k+1

k
e−t dt

=
∞∑
k=0

−e−t

∣∣∣∣k+1

k

=
∞∑
k=0

e−k − e−(k+1)

=

∞∑
k=0

(1− e−1)e−k

= (1− e−1)

∞∑
k=0

(
1

e

)k

= (1− e−1)
1

1− 1
e

= 1 ■
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Proof 9 (Projection Matrices)

Let M be a k-dimensional subspace of Rn, and let A be a n× k matrix whose columns are a basis
for M . Prove that P = A(ATA)−1AT is the projection matrix by proving that

(a) ∀m⃗ ∈M, Pm⃗ = m⃗

(b) ∀w⃗ ∈ Rn, P w⃗ ∈M

(c) ∀w⃗ ∈ Rn, w⃗ − Pw⃗ ⊥M

Proof

Part (a)

Since the columns of A span M , then ∀m⃗ ∈ M, ∃x⃗ : m⃗ = Ax⃗. Then Pm⃗ = A(ATA)−1ATAx⃗ =
AIkx⃗ = Ax⃗ = m⃗.

Part (b)

∀w⃗ ∈ Rn, P w⃗ = A(ATA)−1AT w⃗ = Ax⃗ for some x⃗; this latter product is a linear combination of
the columns of A. Since the columns of A span M , then the product will be in M , which proves
that Pw⃗ ∈M .

Part (c)

Consider any w⃗ ∈ Rn, and let Pw⃗ = m⃗0 ∈M (by part (b)). Let v⃗ = w⃗ − Pw⃗ = w⃗ − m⃗0.
We want to show that v⃗ is orthogonal to all m⃗ ∈ M , which is equivalent to showing that v⃗ is
orthogonal to all the columns of A. This is also equivalent to showing that v⃗ ∈ kerAT . Then

AT v⃗ = AT w⃗ −ATPw⃗

= AT w⃗ −ATA(ATA)−1AT w⃗

= AT w⃗ −AT w⃗

= 0⃗

So v⃗ ∈ kerAT , which means v⃗ ⊥M . ■
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Proof 10 (SVD)

Any n×m matrix A can be written as A = PDQT where

• P is a n× n orthonormal matrix

• D is a n×m matrix (“nonnegative rectangular diagonal”) with di,j =

{
0 i ̸= j

≥ 0 i = j

• Q is a m×m orthonormal matrix

Proof

Part (a)

We want to show that ATA has nonnegative eigenvalues:

ATAv⃗ = λv⃗

v⃗TATAv⃗ = λv⃗T v⃗

(Av⃗)TAv⃗ = λv⃗T v⃗

(Av⃗) · (Av⃗) = λv⃗ · v⃗
∥Av⃗∥2 = λ ∥v⃗∥2 (λ must be nonnegative)

Part (b)

Let v⃗ be an eigenvector of ATA (with λ > 0); then ATAv⃗ = λv⃗. We want to show that w⃗ = 1√
λ
Av⃗

is an eigenvector of AAT .

AAT w⃗ = AAT 1√
λ
Av⃗

=
1√
λ
AATAv⃗

=
1√
λ
Aλv⃗

= λ · 1√
λ
Av⃗

= λw⃗

Part (c)

(Q): Since ATA is a symmetric m×m matrix, it has m eigenvectors, which form the columns of Q.
We know by the Spectral Theorem that the eigenvectors are orthogonal, and we normalize them so
Q is orthonormal (QT = Q−1).

(P ): Consider each of the vectors w⃗ from the previous step; these are also orthonormal. If there are
less than n of them, we create additional orthonormal vectors to complete a basis for Rn. These
vectors will form the columns of P .

(D): Take any non-zero eigenvalues λi of A
TA and set di,i =

√
λi = σi. We set all other di,j = 0.

13
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Part (d)

We want to show that A = PDQT , so we will show AQ = PD.

A

[
v⃗1 · · · v⃗k︸ ︷︷ ︸

λ>0

v⃗k+1 · · · v⃗m︸ ︷︷ ︸
λ=0

]
=

[
w⃗1 · · · w⃗k︸ ︷︷ ︸

1√
λ
Av⃗

w⃗k+1 · · · w⃗n

]

√
λ1 0 · · · 0
0

√
λ2 0

...
. . .

...
0 0 · · ·

√
λk 0

0 0 · · · 0 0


On the LHS, for the first k columns the product will be Av⃗i. On the RHS, the first k columns will

be of the form P ·



0
...√
λi

0
...
0


= w⃗i

√
λi.

For columns k + 1 through m, on the LHS the product will be of the form Av⃗i.
On the RHS, they will all equal the 0 vector, so we want to show that Av⃗i = 0⃗.

We know that ATAv⃗i = 0 · v⃗i = 0⃗, because they are eigenvectors with eigenvalue 0. Let Av⃗i = y⃗ be a
linear combination of the columns of A. Then AT y⃗ = 0⃗, which means y⃗ is orthogonal to the columns
of A. The only vector that is both a linear combination of and orthogonal to a set of vectors is the
0 vector; i.e., y⃗ = Av⃗i = 0⃗. ■
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Proof 11 (Elementary 2-forms)

Suppose that ϕ is an arbitrary element of A2(R3). All we know about it is that it is multilinear and
alternating. Prove that

ϕ =
∑

1≤i1<i2≤3

ai1,i2dxi1 ∧ dxi2

where ai1,i2 = ϕ(e⃗i1 , e⃗i2).

Proof

Let v⃗1 =

ab
c

 = ae⃗1 + be⃗2 + ce⃗3 and v⃗2 =

u
v
w

 = ue⃗1 + ve⃗2 + we⃗3.

We have

φ(v⃗1, v⃗2) = φ(ae⃗1 + be⃗2 + ce⃗3, v⃗2)

= aφ(e⃗1, v⃗2) + bφ(e⃗2, v⃗2) + cφ(e⃗3, v⃗2) (Linearity)

φ is also linear in its second input; we look at the first term above:

φ(e⃗1, v⃗2) = φ(e⃗1, ue⃗1 + ve⃗2 + we⃗3)

= uφ(e⃗1, e⃗1) + vφ(e⃗1, e⃗2) + wφ(e⃗1, e⃗3) (Linearity)

φ is also alternating, so φ(e⃗1, e⃗2) = −φ(e⃗2, e⃗1) and φ(e⃗1, e⃗1) = 0.
We expand and regroup from above:

φ(v⃗1, v⃗2) = avφ(e⃗1, e⃗2) + buφ(e⃗2, e⃗1)

+ awφ(e⃗1, e⃗3) + cuφ(e⃗3, e⃗1)

+ bwφ(e⃗2, e⃗3) + cvφ(e⃗3, e⃗2)

= (av − bu)φ(e⃗1, e⃗2) + (aw − cu)φ(e⃗1, e⃗3) + (bw − cv)φ(e⃗2, e⃗3)

= φ(e⃗1, e⃗2) det

[
a u
b v

]
+ φ(e⃗1, e⃗3) det

[
a u
c w

]
+ φ(e⃗2, e⃗3) det

[
b v
c w

]
= φ(e⃗1, e⃗2) dx ∧ dy(v⃗1, v⃗2) + φ(e⃗1, e⃗3) dx ∧ dz(v⃗1, v⃗2) + φ(e⃗2, e⃗3) dy ∧ dz(v⃗1, v⃗2)

So we have written the 2-form φ as a linear combination of what φ does on the basis vectors times
the basis 2-forms. The general differential form is

φ = φ(e⃗1, e⃗2) dx ∧ dy + φ(e⃗1, e⃗3) dx ∧ dz + φ(e⃗2, e⃗3) dy ∧ dz

15
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Proof 12 (Exterior Derivative)

Let φ = f

(
x
y

)
dx+ g

(
x
y

)
dy be a smooth differential 1-form on R2.

State the definition of
dφ(Px(e⃗1, e⃗2))

and use it to show that
dφ = (Dxg −Dyf)dx ∧ dy

Proof

Since φ is a 1-form, dφ will be a 2-form. It is fully defined if we know what it does on e⃗1, e⃗2:

dφ = a1,2dx ∧ dy

To find a1,2, we calculate the derivative on some parallelogram anchored at a point x:

dφ (Px(e⃗1, e⃗2)) = lim
h→0

1

h2

∫
∂Px(he⃗1,he⃗2)

φ

(
x
y

) (
x+ h
y

)

(
x+ h
y + h

)(
x

y + h

)

(1)

(2)

(3)

(4)

To integrate over the boundary, we have to integrate over the four
segments of a parallelogram with proper orientation.
Here, positive orientation will be counterclockwise (see figure to
the left).
We number each of the segments of the boundary over which we
will parametrize.

For the first segment, we parametrize as γ(t) =

(
x+ ht

y

)
for

0 ≤ t ≤ 1. Then its Jacobian is [Dγ] =

[
h
0

]
. We let the differential

form act on the Jacobian: dx(Dγ) = h and dy(Dγ) = 0.

So, since φ = f

(
x
y

)
dx+ g

(
x
y

)
dy, the contribution to the exterior derivative will be

1

h2

∫ 1

t=0
f

(
x+ ht

y

)
hdt (S1)

For side 3, γ(t) =

(
x+ ht
y + h

)
for t from 1 to 0. The Jacobian will be [Dγ] =

[
h
0

]
, and side 3’s

contribution will be
1

h2

∫ 0

t=1
f

(
x+ ht
y + h

)
hdt (S3)

To combine the contributions from sides 1 and 3, we flip the sign for side 3 and combine (factoring
out h):

−1

h

∫ 1

0

[
f

(
x+ ht
y + h

)
− f

(
x+ ht

y

)]
dt

16
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By the Mean Value Theorem, ∃s ∈ [0, 1] such that the above can be written as

−1

h

∫ 1

0
hDyf

(
x+ ht
y + hs

)
dt = −

∫ 1

0
Dyf

(
x+ ht
y + hs

)
dt

Taking the limit as h→ 0, we get −Dyf

(
x
y

)
as the contribution from sides 1 and 3.

For side 2, we have γ(t) =

(
x+ h
y + ht

)
for 0 ≤ t ≤ 1. Its Jacobian is [Dγ] =

[
0
h

]
, and side 2’s

contribution will be
1

h2

∫ 1

t=0
g

(
x+ h
y + ht

)
hdt (S2)

For side 4, we have γ(t) =

(
x

y + ht

)
with t going from 1 to 0. The Jacobian is again [Dγ] =

[
0
h

]
,

and side 4’s contribution will be
1

h2

∫ 0

t=1
g

(
x

y + ht

)
hdt (S4)

We combine and factor again, and as above use the Mean Value Theorem to get:

1

h

∫ 1

t=0

[
g

(
x+ h
y + ht

)
− g

(
x

y + ht

)]
dt =

∫ 1

0
Dxg

(
x+ hs
y + ht

)
dt

Taking the limit as h→ 0, we are left with Dxg

(
x
y

)
.

Overall, we have that

dφ (Px(e⃗1, e⃗2)) = Dxg

(
x
y

)
−Dyf

(
x
y

)
So

dφ = (Dxg −Dyf)dx ∧ dy

■
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